

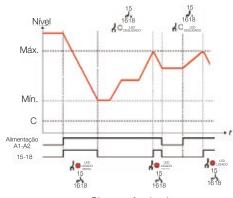
CONTROLE DE **NÍVEL**

É um dispositivo eletrônico de controle que permite o monitoramento e a regulagem automática de nível de líquidos condutivos (não explosivos) através de eletrodos submersos. Possui seletor frontal que permite ajustar o circuito eletrônico a resistividade do líquido.

Aplicações

- Prevenção de funcionamento a seco de bombas
- Proteção contra transbordamento do tanque de enchimento
- Acionamento de solenoides, alarmes (sonoros ou luminosos)
- Automação de processos em geral

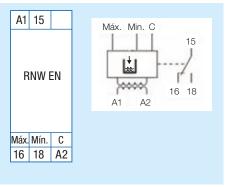
Certificações

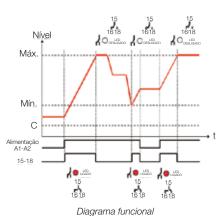

Modos de Operação

Função Esvaziamento

O relé de saída energiza (fecha o contato 15-18) quando o líquido atinge o eletrodo de nível máximo e desenergiza (abre o contato 15-18) quando o eletrodo de nível mínimo é descoberto.

RNW-ES

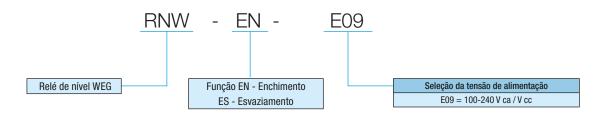

Esquema de ligação


Diagrama funcional

Função Enchimento

O relé de saída energiza (fecha o contato 15-18) quando o eletrodo de nível mínimo é descoberto e desenergiza (abre o contato 15-18) quando o líquido atinge o eletrodo de nível máximo.

RNW-EN

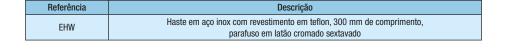

Esquema de ligação

etcaeletrica.com.br

Codificação

Especificação

Referência	Tensão de alimentação	Descrição	
RNW-ES-E09	100-240 V ca ou 100-240 V cc (A1-A2)	Relé de controle de nível função de esvaziamento	



Referência Tensão de alimentação		Descrição	
RNW-EN-E09	100-240 V ca ou 100-240 V cc (A1-A2)	Relé de controle de nível função de enchimento	

Acessórios

Eletrodo tipo haste

Descrição Corpo em polipropileno preto natural, haste sensora em aço inox, cabo 1 m (flexível 10 mm²)

Descrição

Adaptador para fixação parafuso (02 peças por embalagem)

Eletrodo tipo pêndulo

Ada	ptador	PI	MP

Referência	Descrição	
MARC	Adaptador para montagem lateral em contatores WEG CWM9-105 / CAWM4	

Adaptador MARC

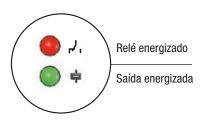
Referência Descrição		Descrição
	MARC	Adaptador para montagem lateral em contatores WEG CWM9-105 / CAWM4

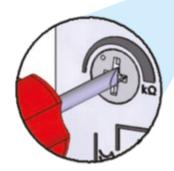
Referência

Referência

PLMP

Funcionamento


É baseado na medição da resistência elétrica do líquido do reservatório através de um conjunto de eletrodos submersos, que funcionam como sensores de presença / ausência de líquido.


Quando o sistema for energizado uma tensão alternada¹⁾ é aplicada no eletrodo de referência, assim que o líquido entra em contato com os eletrodos é estabelecido um caminho para a circulação de corrente elétrica entre eles. Um circuito eletrônico compara a corrente e, conforme o modelo escolhido, realiza a lógica que comuta os contatos de saída.

Nota: 1) A corrente CA minimiza a eletrólise e aumenta a vida útil dos eletrodos.

Ajuste de Sensibilidade

A resistividade pode variar, conforme o líquido e a posição de instalação dos eletrodos. Para adequar o circuito eletrônico do RNW ao líquido utilizado, a sensibilidade deve ser ajustada através do seletor frontal, que tem uma escala graduada (k Ω). O ajuste de sensibilidade deve ser feito com todos os eletrodos submersos no líquido do reservatório e o seletor deve estar posicionado no seu limite anti-horário (o de menor resistência). Com o relé energizado o seletor deve ser girado no sentido horário (o de maior resistência) até que a saída do relé comute seus contatos e o LED vermelho mude de status. Para confirmar o ajuste o eletrodo de referência deve ser desconectado e logo em seguida conectado novamente. O RNW deve voltar ao seu status anterior a desenergização e assim estará ajustado ao ponto ideal de sensibilidade. Caso isso não ocorra, todo o procedimento de ajuste deverá ser feito novamente.

Dados Técnicos

	Produto		RNW ES / RNW EN	
	Alimentação (Us)	A1-A2	100-240 V ca (50/60 Hz) / V cc	
	Faixa de operação		0,85 a 1,1 x Us	
Entradas	Tensão nominal de isolação (Ui)		300 V	
	Frequência		50/60 Hz	
	Consumo máximo		2 / 1 VA/W	
	Contatos	15 - 16 / 18	1 SPDT	
	Capacidade dos contatos de saída (le)	10 107 10	AC-12 (resistivo) em 250 V ca - 5 A	
	AC-15 em 230 V ca		3 A	
	DC-13 em 24 V cc		1 A	
	DC-13 em 48 V cc		0,45 A	
	DC-13 em 60 V cc		0,35 A	
	DC-13 em 125 V cc		0,2 A	
Saídas	DC-13 em 250 V cc		0,1 A	
	A300		AC-15	
	R300		AC-15 DC-13	
			10 A para CA	
	Corrente térmica nominal (Ith)		1 A para CC	
	Fuefuel (aleans at / a0)		*	
	Fusível (classe gL / gG)		4 A	
	Vida mecânica		30 x 10 ⁶ manobras	
	Temperatura ambiente permitidas		5 0000	
	- Em operação		-5 a +60 °C	
	- Armazenado		-40 a +85 °C	
	Grau de proteção		Invólucro IP20 / Terminais IP20	
	Seção dos fios condutores		1 x (0,5 a 2,5) mm ²	
	(mín. a máx.) - Fio Cabo com terminal		2 x (0,5 a 1,5) mm ²	
			1 x (0,5 a 2,5) mm²	
	Cabo Com Commun		2 x (0,5 a 1,5) mm ²	
	Condutor sólido AWG		2 x (30 a 14) AWG	
Características	Torque de aperto		0,8 a 1,2 N.m	
	Torquo do aporto		7 a 10,6 lb.in	
	Parafusos dos terminais		M3	
	Posição de montagem		Qualquer	
	Resistência a impactos		15g / 11ms	
	Resistência a vibração		10 a 55 Hz / 0,35 mm	
	Peso		0,08 kg	
	Grau de poluição		2	
	Categoria de sobretensão		ll .	
	Ajuste da sensibilidade		0 a 100 kΩ	
	Tensão no eletrodo		7 V ca	
	Corrente do eletrodo		0,05 mA	
	Comprimento máximo do cabo do sensor		100 m (máxima capacitância do cabo 2,2 nF) ¹⁾	
	Tomporatura da aparação da capaci	Haste	0 a + 260 °C	
Sensores	Temperatura de operação do sensor	Pêndulo	0 a + 60 °C	
	Pressão admissível no sensor	Haste	3 kgf / cm²	
		Pêndulo	-	
		Haste	0,230 kg	
	Peso do sensor	Pêndulo	0,012 kg	
	Comunidade Europeia		Todos os modelos	
Certificações	Canadá e EUA			
	Argentina Argentina			
	rigonana			

Notas: 1) Evitar passar os cabos dos eletrodos próximos aos cabos de potência. Para a ligação dos eletrodos recomenda-se também utilizar cabos unipolares.